
The effect of trigonal and tetragonal stresses on the model Jahn-Teller system Y2+:SrCl2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 10265

(http://iopscience.iop.org/0953-8984/1/51/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/51
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 10265-10279. Printed in the UK 

The effect of trigonal and tetragonal stresses on the 
model Jahn-Teller system Y2+: SrCl, 

H Bill and D Lovy 
Department of Physical Chemistry, University of Geneva, 30 Quai E Ansermet, 1211 
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Abstract. The effect of externally applied stresses of e, and tZg symmetry on the cubic E, C3 e, 
Jahn-Teller (IT) system Y2+ in SrC1, is studied. Coupling constants were obtained with the 
aid of EPR and by relying on a Ham-type clustern Hamiltonian, in conjunction with a random 
strain distribution. This is established from a critical review of the contributing strain sources 
(including possible percolation effects due to the isotopic composition of natural SrCIJ. The 
stress of tzg symmetry shows strong effects. We conclude that the cubic Ham factor q is nearly 
one and that the experiments allow, as a function of this latter stress, us to pass gradually 
towards a trigonal JT effect. The optical absorption spectrum assigned to Yz+ is given in 
addition. 

1. Introduction 

Random strain plays a very important part in the theory of the weak to intermediate 
Jahn-Teller effect of the 2E electronic state, as was first shown by Chase [l] and by Ham 
[2]. In particular, an adequate interpretation of the ESR spectra of this type of system only 
became possible when random tetragonal strain was incorporated into the Hamiltonian. 

Examples which exhibit in their ESR spectrum pronounced effects due to random 
strain are Sc2+ in the alkaline earth fluorides [3], Y2+ [4] and La2+ [3] in SrC12. 

However, rather limited use was made, in the published experimental studies, of the 
fact that stress applied to the sample should likewise have important effects on these 
systems. Firstly, the experiment will show if there is a reaction. Then, information is 
gained on the distribution and the symmetry of random strains. Finally, by applying 
stress of different symmetries to the sample one expects to gain information regarding 
the strength of the dominant JT coupling constant. 

These facts prompted us to study the effect of uniaxial stress on the ESR spectrum of 
an appropriately chosen system. The Y2+ ion in SrC12 is useful because its ESR spectrum 
is known and has been interpreted successfully [4] with the Ham cluster model. It has 
the further merit of relative simplicity as we have a 4d1 ion with a nuclear spin I = 4. No 
resolved superhyperfine interaction is seen in this spectrum. 

We begin by formulating a few theoretical results. Then, the experiments are 
described and interpreted with their aid. 
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2. Structure of the complex; theoretical considerations 

Y2+ substitutes for a host Sr2+ ion in the otherwise locally complete lattice. It is sur- 
rounded by a cube of eight C1- neighbours. The ground state of the free ion, (2D), splits 
in the cubic surroundings (group oh) into a2E, ground state and a T2, excited state which 
is located approximately 17450 cm-l above the ground state (see below). Both states 
are candidates for the JT effect. 

2.1. The Jahn-Teller model 

According to Herrington et a1 [4] Ham's weak linear E C3 E Jahn-Teller cluster model 
[2] explains the observed ESR spectra well when one assumes that the vibronic ground- 
state doublet (2Es) and the symmetrical first excited state (a singlet) are separated by an 
energy difference much larger than the microwave quantum. Then, the use of an effective 
Hamiltonian within only the doublet is justified in explaining the conventional ESR 
experiments, 

The exact position of the singlet state is not known and we considered whether strain 
effects arise which involve the ground-state vibronic doublet and this singlet state. 

This effective perturbing Hamiltonian is 

H = H S E  + H Z E  + H h f  + HsT (1) 
as defined in Appendix 1 and in [5]. 

Herrington et a1 derived the ESR transitions of the Y2+ from the Hamiltonian 
Hs, + HZE + Hhf which was evaluated within the 'E ground vibronic level under the 
assumptions H,E + HZE + Hhf in second-order perturbation theory. Instead, we prefer 
to work with the matrix (A1.4) within the vibronic doublet ground state ( 1  U + ) ,  I U - ) ) .  

Random static strain needs to be included to reconstruct the Emspectra. It is specified 
by a strain probability distribution. Tetragonal strain, which is a first-order effect in this 
model, has a distribution P( E ,  q) which depends on two strain parameters (Appendix 
2). In the absence of externally applied stress it is not necessary to know the &dependence 
of the distribution function to diagonalise the matrix (Al.4), as long as the strain energy 
differences are large compared with the Zeeman effect [2]. Another reason is that 
p (  E ,  q) = P( 5 ,  q) d d q tends to zero at the origin for any reasonable strain distri- 
bution. Stress applied to the sample changes these facts. 

2.2 .  Random static strain distributions 

The form of the probability distribution P( E ,  q )  is central to a successful detailed 
reconstruction of the ESR spectra but, unfortunately, is difficult to assess precisely, as 
several effects contribute. At  present these include: 

(i) the intrinsic Frenkel defects of the pure crystal and possible dislocations. In the 
best of our samples this is probably a minor source; 

(ii) usually SrC12 contains alkali halide ions (K+, Na') [6] as impurities. We used 
ultrapure powders to begin with and grew the crystals under very clean conditions. 
Again these contributions are likely to be of minor importance; 

(iii) the as-grown crystals contain the yttriums ions in the 3+ state. After x-irradiation 
they are in part converted into Y2+. Most of the bivalent yttrium ions we observed were 
of cubic symmetry. In two of the 20 crystals investigated we found in addition a static 
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Table 1. 
~~ 

JT ion 

a b Tetrag. centre 

gl 1.9321 1.9291 gl = 1.9968 
9g2 - 0.0454 -0.0478 g, = 1.9234 
A ,  27.7 24.3 All = 18.1 
qA 2 6.45 5.0 A ,  = 11.0 

a: this paper. 
b: references [3,4]. 
hf constants: [lo4 cm-I]. 

tetragonal Y2+ centre. It is seen at 78 Kandits spin Hamiltonianparameters (determined 
with a normal tetragonal spin Hamiltonian) are given in table 1. Thus, possibly, a small 
percentage of the yttrium ions are locally charge compensated by an interstitial C1- ion 
forming elastic dipoles. 

The strain field produced by dislocations decreases as G/r [7]. G contains the 
orientation, the nature of the dislocation and the angular dependence of the strain field 
whereas r is the distance to the point where the strain is measured. The strain field 
induced by point defects is proportional to G’/r3) [7]. The angular factor G’ contains 
the corresponding factors as above. The charged defects produce, in addition, an electric 
field gradient, but at present this is not important. 

Owing to the JT effect the cubically coordinated Y2+ ions contribute in a particular 
way to the total strain field. According to Englman and Halperin [8] this contribution 
decays into the lattice approximately as (G”/rk)  with 2 S k S 3. Again G” contains the 
angular factors and constants. 

The crystals (also the undoped ones) made from very pure starting materials and 
grown slowly under thoroughly controlled conditions still showed, under a microscope 
with crossed polarisers, random strain which is much more important than that observed 
under comparable conditions in the alkaline earth fluorides. Heat treatments resulted 
in an improvement but did not eliminate this effect totally. This is at variance with 
respect to the results obtained on equivalently treated alkaline earth fluoride crystals. 

One possible origin of this difference is that the natural SrC1, crystals consist of a 
random mixture of the two chlorine isotopes, 35 and 37, in the approximate ratio 3 : 1. 
Thus, each crystal is a random mixture of two isotopic crystals inducing slight misfits 
which represent sources of random strain. It is probable that the spatial distribution of 
the isotopes is homogeneous in the sense that a self-similar structure can be constructed 
under dilatation symmetry from a fixed but arbitrary point of the crystal following the 
way this is done on a percolating lattice. The crystal can be considered as a three- 
dimensional net occupied randomly by one of the other of the two isotopes in the 
probability ratio given above. It thus resembles the percolating structures (e.g. [9]) when 
for instance 37Cl is considered. This isotope has a probabilityp = 0.25 to occupy a site 
of this lattice. A Hausdorff dimension d is expected to exist for the crystal according to: 
mass - r d  [lo]. The percolation threshold of a three-dimensional FCC lattice is p, = 0.2 
[9]. At p = pc one has d = 2.5, whereas d = 3 for p close to one. Thus, one has 
2.5 < d < 3, probably of the order of 2.6. 

This ‘Swiss cheese’-like structure (with respect to each C1 isotope) implies a con- 
tribution to the total random strain field which probably has a radial dependence 
somewhere between r-l and Y - ~ .  
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Therefore, the total random strain field is expected to decay radially as r-” with 
n S 3. In Appendix 2 probability distribution functions are considered with reference 
to the above considerations. We obtain as a useful function (A2.4~) :  

Another important (though somewhat academic) consequence of the fractal nature of 
natural SrClz crystals is that the optical phonons of the crystal have a fracton-type 
behaviour similar to the one identified in glasses by Alexander and Orbach [ 111. 
Although the force constant matrix is the same for the two isotopes the masses are 
different and, depending on the composition of the local cluster, the optical phonon 
frequencies are then distributed in a manner similar to the one of a (narrow) fracton 
distribution. This is expected to hold for the distribution of effective frequencies of the 
ensemble of local JT centres. When only the ground vibronic doublet of the centre is 
considered this effect results essentially in a distribution of Ham reduction factors. It 
would certainly be helpful to grow an isotopically pure SrC1, : Y2+ crystal in order to 
decide about the importance of the above mentioned effects, which finally contribute to 
the shape of the observed ESR pattern. 

3. Experimental 

A modified Varian E-line X-band spectrometer was used. Two laboratory built stress 
cavities were available. A T E ~ ~ ~  cavity allowed us to work with p parallel to the B-field 
whereas the one with mode structure TEIOl always applied stress perpendicular to B. 
Working temperatures with these cavities were between 1.3 K and room temperature. 

The crystals were grown from ultrapure powder (Johnson-Mathey 99.999 pure) in 
our Bridgman furnace under high vacuum (<10-6Torr, liquid N2 trap). The melt 
was contained in a crucible made from ultrapure graphite. The RF induction heating 
technique was used. The dopant was added to the salt in the form of ultrapure YC13 
powder (from Johnson-Mathey, London), typically 0.03 to 0.3 %. The resulting cyl- 
indrical single crystals (approximately 3 cm length and 15 mm diameter) were cut and 
ground into oriented slabs of typical dimensions 2.8 x 5 x (8 to 10) mm. The 
x-irradiation took place at room temperature (50’, 40 kV/35 mA, Wo-anode). 

4. ESR under stress: results 

4.1. Tetragonal applied stress 

At zero external stress the typical powder-type ESR spectrum is observed, as shown in 
figure 1, spectrum A.  It consists of two patterns due to the hyperfine interaction with 
the yttrium nucleus (I = 3 j .  

When stress is applied to the sample the spectrum changes dramatically (figure 1, 
spectrum B, where the effects of the tetragonal stress are seen). We proceed by pre- 
senting the different experimentally examined situations in some detail. 

4.1.1. B / / p  / / C ,  (dejined as the .z axis). The solutions obtained from matrix A1.4) within 
this geometry and in the absence of stress, but also under a strong applied tetragonal 
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Figure 1. Uniaxial stress experiments with geometry: p / /  C4 / /  E .  T = 1.9 K. Microwave 
frequency = 9.20451 GHz. A, EPR spectrum observed whenp - 0; B, Stressp = 4.35 X lo7 
Pa applied. Inset: gain x 4. The two weak central lines are probably due to relative 
extrema of the powder spectrum (see text). 

one, yield two ESR doublets which are centred at g, + qg, for the 1 U + )  vibronic state and 
g ,  - qg, for the I U-) one. The separation between the two states is proportional to the 
applied stress energy, with values 2s (A1.3). 

As the observed spectrum approaches at highest applied stress the limiting infinite 
stress situation it is possible to determine with high precision the spin Hamiltonian 
parameters. 

Our values are compared with those of Herrington et a1 [3] in table 1 (left hand part). 
The intensity difference between the two line pairs in the experimental ESR spectra, 

recorded as a function of the applied stress p ,  allows us to determine the order of the 
states in the vibronic doublet. Their separation is (from A1.4) 

2s = 2qVSE(SI1 - S1,)p = 2vp 

when the validity of the bulk elastic tensor (s, Voigt notation) is assumed. Ligand field 
theory predicts that 48, < 0. Thus, from the comparison of these results with the 
experimental spectra it follows that the state 1 U - )  is lowest and that the proportionality 
constant v i s  positive. Its value is obtained from the plot ln[(nl/no),/(nl/no)o] against p 
where (nl/no)p is the ratio of the intensity of an experimental line height n l  over the 
same quantity of the corresponding calculated one no at pressure p normalised by the 
zero-pressure ratio. As the transfer of resonating packets from the powder pattern into 
the two doublets contributes to the intensity changes, a detailed computer simulation of 
the spectra was necessary. Further, under applied stress the 6- and q-dependences 
of random strain become interrelated because the former quantity shifts the strain 
distribution away from the origin. The functional form of the strain distribution used in 
the simulation is given by (2). A grid of values of = nAg(n = 0,1, . . . , N )  and qm = 
( 2 n / M )  (m = 0, 1, .  . . , M )  was chosen. At each point the ESR transitions and the 
associated transition probabilities were obtained from (Al.4). These latter ones were 
multiplied by exp(+s/kT), and by p ( E ,  q ) .  Then, the sum on all the solutions 
contributing to the (equidistant) magnetic field interval ABk (k = 1, 2 , .  . . , N B  (= 
(Bmax - Bm,")/AB)) was evaluated. The numerical procedure followed standard tech- 
niques. The stick spectrum was smoothed by convoluting it with a Gaussian line function 
of half width 2.1 G .  



10270 H Bill and D Lovy 

Figure 2. Uniaxial stress applied to the crystal: p 11 C4 1 1  B I /  2. For dependence of the line 
intensities see text. The ratio of the slopes is equal to the inverse ratio of the temperatures. 

Each situation consisted of a spectrum calculated with T = 10000 K and the cor- 
responding one with T = 1.9 K,  the temperature of the experiment. Figure 2 shows the 
plot obtained from the comparison of the two sets. The straight line obtained in this plot 
is expected within a linear JT effect and under Hook's law. Its slope is 

v = 1.14 x lo-' cm-'/Pa. 

This factor allows the calculation of the reduced coupling constant (qvsE) when the 
elastic tensor is known. Using the bulk elastic constants of SrC1, one obtains qvsE = 
6.14 x lo3 cm-'/unit strain, where sl, - s12 = 1.86 x lo-" m2 N-'. 

4.1.2. p //C, = z ,  B //C, = x .  These experiments give additional information regarding 
the strain distribution. The solutions of the matrix (A1.4) predict two ESR doublets 
centred at g, * qg2  under zero applied stress. Under high stress the doublet associated 
with the I U - )  state is centred at g ,  - lqg& and the one corresponding to tu+)  is at 
g ,  + Iqg/2I, by taking the sign of qg,  as established above. The experimental spectra 
(figure 3) already exhibit a marked intensity loss of the lines at g, 2 q g ,  under a com- 
parative!y small applied stress. Simultaneously, the set of lines at g, ? qg2/2  increases 
in intensity: the high-field doublet grows strongly whereas the low-field one is less 
affected, because the Boltzmann factor favours the I U - )  state. 

In figure 4 is depicted the intensity (normalised by the zero-stress value) of the lowest 
field component of the spectrum as a function of applied stress. This plot has been used 
toadjusttheconstantofthestraindistribution (equation (2)). ItsvalueisA = 0.69 x lo7. 

4.2. Trigonal stress 

Trigonal stress is purely off-diagonal within the matrix (A1.4). We have studied its effect 
experimentally by applying stress along a [ l l l ]  crystal axis. The main result, common 
to all of our experiments, is that the pattern decreases strongly in intensity with increasing 
stress. But neither do the line centres shift within the precision of our measurements nor 
is any relative intensity change between lines observed. The following situations were 
investigated. 
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Figure 3. Uniaxial stress applied to the crystal: 
p 11 C4 = Z, B 1 1  C; = x .  T = 2 K. A, p = 0, the 
broad feature is due to microphonics and appears 
when stress is totally released; B, p = 
1.9 x lo7 Pa; C, p = 2.58 x lo7 Pa. 

p I /  C3 11 B.  The two ESR doublets are located at g, t [ (qg2)2 /2]gl  (to second order) at zero 
stress and both are at g, under high stress. Figure 5 (parts ( a )  and (b ) )  gives experimental 
spectra of this situation. Figure 5(b) shows the normalised line intensity as a function of 
applied stress. Results at 1.9 and 4.2 K sample temperature were used. 

p 11 C,, B 11 C2 I C,. Figure 6 shows the observed variation of the ESR spectra for this 
geometry. The stress dependence is the same as that in figure 5(b). 

No temperature dependence was observed in these experiments within their repro- 
ducibility. 

Additional stress experiments were performed on CaF2 : Sc2+ to check the generality 
of the conclusions on other, similar systems involving a weak JT effect. Under the above 
geometry a strong, full reversible intensity decrease was observed. 

On applying tetragonal stress to asuitable CaF2 : Sc2+ sample along C4 aredistribution 
of the line intensities was observed analogous to the ones observed on SrC12 : Y2+. The 
results from the two systems are fully similar. 

0 1 2 3 
p (lo7 Pa) 

Figure 4. Intensity of the spectral components labelled by an asterisk in figure 3, curve A ,  
as a function of applied stress (same geometry as figure 3). Points, experiment; curve, fit 
from (A1.4) with distribution equation (2). 
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X + X 

T x + I 0.2 

I 1 I 4 1 '  0.355 0 1 2 3 
p (io7 Pa) 

Figure 5.  Trigonal stress applied to crystal: p / /  B / I  C3. T = 4.2  K.  Microwave frequency = 
9.44467 GHz. (a ) :  A, p = 0; B, p = 2.986 x lo7 Pa. (b)  Peak-to-peak intensity of the low- 
field line of this spectrum, normalised by its zero-stress value, as a function ofp: x , 1.9 K; 
+. 4.2 K.  

4.3.  Temperature dependence 

Our simulated ESR spectra obtained for B parallel to C4 yielded under widely varying 
conditions a comparatively weak doublet centred at g = gl .  Such a doublet is also 
observed in the experimental spectra. It has been interpreted as being a dynamical 
feature arising due to partial motional averaging of the powder-type pattern. But it has 
also been assigned as being due to the excited vibronic singlet state. 

8 

A 

Figure 6.  Trigonal stress applied to crystal: p 11 C3, B I /  C2 I C,; T = 1.74 K;  9.42344 GHz. 
A, p = 0; B, same as A except gain + 10; C, p = 2.51 x lo7 Pa. The structure below 0.34 T 
is due to static impurities introduced to show that the effect is genuine to Y2". 
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0.33 0.35 Figure 7. Temperature dependence of the EPR 
spectrum at zero external stress. B 1 1  C4. T (K). ( T I  

Figure 7 shows the temperature dependence of the ESR spectrum. It shows clearly 
that there is a motionally averaged component present. On the other hand, a small 
contribution due to stationary points generated by the internal strain distribution is also 
present as can be seen in figure 1, curve B. This central doublet is unaffected by 
temperature between 4.2 and 1.5 K. 

On the other hand it is more unlikely that one of the excited vibronic singlets 
contributes because we did not observe any effect on the central doublet due to non- 
diagonal external strain matrix elements in our stress experiments, between 15 and 35 K. 

5. Optical absorption spectrum 

A few optical absorption experiments have been performed (with a Beckman Dk 2a 
spectrometer) on our x-rayed samples. 

I 

0.9 

0.6 
78 K 

K 8 
wx) 500 600 700 

( n m )  

Figure 8. Optical absorption spectrum of Y2+: SrCI2. T = 78 K,  ordinate values right-hand 
scale; T = 10 K,  ordinate values left-hand scale. 
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The ones containing Y2+ exhibited a characteristic pink colouration and the absorp- 
tion band (of intermediate oscillator strength) shown in figure 8 was found. Its optical 
density is proportional to the Y2+ ion concentration. 

As shown by figure 8 the shape of the absorption band is temperature dependent, 
This fact and the peculiar shape are reminiscent of the structure and temperature 
dependence of optical transitions of JT states, as theoretically predicted by several 
authors. 

For these reasons we tentatively assign the band to transitions between the Jahn- 
Teller active E, ground state and T,, excited state of the Y2+ ion. The centre of the 
structure is at 17455 cm-'. 

6. Discussion and conclusions 

(i) Effect of trigonal strain. This remarkable effect indicates that coupling to trigonal 
vibrations is not much smaller than that to tetragonal ones. An attempt to simulate the 
intensity decrease shown in figure 5(c) with the aid of the model, matrix (A1.4), by 
including the term (Al . ld) ,  did not yield satisfactory results. The observed intensity 
decrease of the ESR pattern was obtained, but in conjunction with sizeable shifts of the 
resonance fields, in disagreement with experiment. 

A useful discussion has to consider, probably, the transition between a cubic and a 
trigonal (D3d symmetry) Jahn-Teller effect. We sketch in the following the model by 
neglecting the tetragonal random-strain effects. 

It is appropriate to discuss this situation with respect to trigonal axes (211 [ l l l ] ,  
Y 11 [ liO], X 11 [iT2]). Within the weak coupling JT model one still has in the limit of cubic 
symmetry a vibronic E x D1/2 = Ts ground state. The electronic basis involved is formed 
by states given by 

1 EO)  = cos y 1 X* - y 2 )  + *sin y 1 XZ) 
1 E E )  = VFsin y I YZ)  - 2 cos ~ I x Y )  

where y = y o  = c0s-I 3-'12 for cubic symmetry. Applying now stress along [ 1111 amounts 
to creating a trigonal field which modifies the value of y .  As the stress-induced trigonal 
field is probably small compared with the cubic field splitting A ,  the value y - y o  remains 
small. 

One has to go to the combined effect (trigonal field + spin-orbit coupling (Al . ld)  
to obtain an operator which splits the Ts state under D3d symmetry. Expressed in trigonal 
axes this gives 

with k containing the factors not important for the discussion. The matrix u2 has the 
form given in Appendix 1, but it refers to the trigonal axes. This term produces modified 
selection rules of the ESR transitions as it modifies the admixture of the two electronic 
states involved in the vibronic doublet. The lengthy detailed analysis will be given 
elsewhere. 

This discussion shows that a trigonal strain which is not sufficiently quenched by the 
cubic E €3 e JT effect is at the origin of the modified selection rules observed in the ESR 
spectrum. If it were strong enough it would probably totally impose a trigonal JT effect. 
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(ii) lnfluence of totally symmetrical al stress. Stress applied along [ 11 11 transforms under 
cubic symmetry as alg + t2g. Thus, there might result a contribution from alg stress 
through coupling with other irreducible representations (IREP) modes. Cross terms 
between the vibrations transforming as eg and those transforming as alg probably affect 
most importantly the frequency of the effective JT mode. This amounts to a systematic 
shift of the effective e mode frequency. 

Therefore, the weak cubic JTeffect, probably in conjunction with the cubicgeometry, 
is probably the origin of the strong effects due to external trigonal stress. Note that the 
local deformation mode pair transforming as eg corresponds to a tangential movement 
with respect to the bonds Y3'-Cl- whereas the trigonal deformation coordinates of 
one of the t2g modes involve radial displacements. 
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Appendix 1. JT model of the lowest vibronic states 

This appendix gives the results obtained from the Jahn-Teller theory which are needed 
in the main text. The theory of the weak coupling Jahn-Teller effect between an 
orbital E, doublet and an effective local cluster mode transforming likewise as (cubic 
symmetry) has been published by Ham [2]. 

We have followed the notation of [5] and use Greek lower case letters for the IREP 
of vibrations. 

The two states of the vibronic ground-state doublet are written {/Eu), IEu)}. The 
perturbing effective Hamiltonian which acts within this doublet contains, in decreasing 
order: 

(i) Tetragonal strain (VE = coupling constant, ee and e,  are the tetragonal com- 

(Al .  l a )  

ponents of the strain tensor) 

HSE = VE(eeUe + e , ~ , )  
(ii) Electronic Zeeman term (gl, g2 are the g-values within the electronic doublet) 

HzE = g l P o B . S u l  +Ig2Po[ (3B ,S ,  - B . S ) u e  

+ V 3 ( B x S ,  - B,S,JU ,I. (Al . lb)  

(iii) Hyperfine interaction: ( I  = 1, A, and A2 are the hyperfine constants within the 
electronic doublet) 

H hf = A 1 S * Z U 1 + &A 2 [ (3s 2 I 2  - S * Z)U e 

+ ~ ( S x Z x  - S y l y ) u e ] .  (Al .  IC) 
(iv) Trigonal strain in second order in conjunction with the spin-orbit coupling (V ,  = 

coupling constant, exy etc = trigonal components of the strain tensor, A = the spin-orbit 
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coupling constant, A = the cubic field splitting between the electronic E, ground state 
and the TZg excited state). 

HST = (AvT/A)(sxeyz + Syezx + SZexy)u'2 (Al.ld) 

Finally 

within the vibronic doublet. The numbers p and q are the Ham reduction factors as 
defined in [2]. 

Keeping the spin-dependent parts as operators one obtains a 2 X 2 matrix within the 
unperturbed vibronic ground level. It is useful to diagonalise first HSE and to transform 
the other perturbations to the thus obtained basis functions. To this end the tetragonal 
strain is expressed in polar coordinates. The following quantities are used: 

f 2  = (e; + e:) and tan Q, = e,/es. (A1.2) 

The matrix 

diagonalises HSE: 

with basis functions 

lu+)  = sinig,IEsv) + c o s i ~ , ) E , v )  

i u - )  = c o s ~ ~ , ( E ~ v )  - s i n i ~ , J E , v ) .  
(A1.3b) 

The ESR transitions are obtained by writing out the spin part within the product space 
E,v x D(S) x D(Z)). This is a standard procedure and the details are not given. The 
matrix (A1.4) contains the necessary information. 

cc 

(A1.4) 
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Appendix 2. Random strain, distribution function 

The aim of this appendix is to establish a suitable strain distribution function. We 
choose a homogenous random distribution of strain sources, assumed to be mutually 
uncorrelated. Their density is p = N / V .  The strain field produced by each of them is 
assumed to have the form given by 

(A2.1) 

with 1.5 c n c 3, where c contains the strength and the nature of the local strain 
source, labelled Z ,  at position r = (xl, x2, x3) = ( r ,  6, q )  with respect to the origin 
chosen to be the point where the total strain is measured. As we are interested in the 
functional dependence of the probability distribution we do not try to to develop a 
model for c. The angular dependence of (A2.1) was essentially chosen for mathematical 
convenience. Indeed, it is of great use in handling radial divergency problems in 
(A2.4). The probability distribution of the sources is p(Z). 

The strain tensor is assumed to be symmetric. The two linear combinations of 
elements (A2.1) which transform as a basis of the IREP E, in Oh symmetry are 
represented by the symbols eh(r), e:(r)  (see § 3.3.4 of [7], which treats the general 
subject in detail). 

Under these assumptions the strain distribution function P(e0, e,) is given by the 
weighted average over the occurrence of pairs of global strains arising from the 
randomly distributed sources. The approximate form is (we replace the sum by an 
integral and assumed the validity of Hook's law). 

(A2.2~)  

This integral is transformed with the aid of the spectral representation of the S- 
function and then further transformed according to [12,7], to give 

(A2.2b) 

This last integral assumes that N -  with constant density of defects. Thus, p(Z) 
d Z  is proportional to the volume. Transforming to polar coordinates with respect to 
r one has p(Z) d Z  = 1.2 sin 6 d 6 d q .  

The quantity J(x, y) has the following form [7]: 

J(x,y) = dZp(Z){l - exp[-i(xeh(r) + ye:(r)]}. i (A2.3) 

We replace p ( 2 )  d Z  as given above and introduce the explicit form of eh and e: with 
the aid of (A2.1). Additionally, it is useful to transform the dummy variables x,  y 
(also in the Fourier integral (A2.2)) to polar coordinates (x = ucos a ,  y = as in  a ) .  
One obtains after some further changes of variables (t = r-", t ,  = R;" , t2 = R;" , with 
RI e R2) 

(A2.4) 
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where d Q  = the angular part of the polar volume element and g = cos a (1  - 
3cos @) - fi sin a sin2 @cos 2 q .  Furthermore, p = (3 + n)/n and a = 3ca/2. 

As discussed in the main text a possible range of n values is 1.5 < n < 3 which 
implies 2 S p G 3. 

An energy perturbation decaying as Y - ~  or slower diverges as r +  CO. Its angular 
dependence is such, at present, that it can force the expression to converge. For this 
reason the t-integral of (A2.4) needs careful consideration regarding its convergence 
properties [7,12]. 

(a) p = 2 
The radial integral is evaluated by integrating by parts. The angular integral of g 
ensures convergence of the imaginary part. 

The angular integral yields finally: (U = sin2(@/2)) 

J(a, a) = 4c na COS a d u  [AHh(n - 2 c0s-l (AHIBH)) 

(A2.5) 

with AH = 6u(l - U) - 1 and BH = 2q/3(tan a)u(1 - U). Fughermore u1 = 0, u2 = 
1 for 0 G a < 30", and u ~ , ~  = 1 zk A[(cot a + 'd\/3)/(3cot a + 'd3)]1/2 for a 2 30". 

This integral depends very little on a and we assume it to be constant (= Const) 
with respect to this variable in what follows. Apart from this result, its exact value is 
of no interest, as we decided not to develop a detailed model for c. Thus 

i 
+ B H  sin(cos-'(AHIBH))] 

](a, a) = (Const)a 

(b )  2 < p < 3 

The radial part yields 

(A2.6) 

The r(l - p ,  ialglt) are incomplete gamma functions of imaginary argument. The 
angular integral of this expression is obtained without special difficulties for the real 
part, whereas the imaginary part needs a detailed analysis, beyond the scope of the 
present paper. However, J(  , ) - a"-'. 

(c) P = 3 
The f-integral yields 

The angular integral results in: 

(A2.7) 
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The real part is independent of a. Its logarithmic divergence arises because the finite 
lattice sum was replaced by (A2.2). When the finite lattice sum is retained the result 
remains finite. The first term of the imaginary part is forced to zero by the angular 
integral and the second one becomes very small in its absolute value compared with 
the real part. Making the further approximation to neglect it we are led to the result. 

J(a, a) = (Const)a2. 

Again, we are not interested in the exact value of the integral-as long as it is 

Introducing these results into (A2.2), using polar coordinates (A1.2) to transform 
(nearly) independent of a a n d  is finite. 

ee ,  ee, and integrating over a one finds 

P( E ,  q )  = & d a  aJo( ga) exp[ -(Const)am] 
0 

(A2.8) 

where Jo(Eo) is a Bessel function of order zero and m = 3/n. We looked for solutions 
both for m = 1 and 2. They are: 

(A2. sa) 

(A2.8b) 

The parameter A contains the result of the integrations which do not depend on E .  It 
is treated in what follows as an adjustable parameter. 

The interesting result is that for point-like dipolar strain sources (n  = 3) the 
distribution is not a Gaussian. 

We used both distributions to fit our experimental spectra. (A2.8~)  gave somewhat 
better results and was for this reason used. 
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